Membrane tension controls adhesion positioning at the leading edge of cells

نویسندگان

  • Bruno Pontes
  • Pascale Monzo
  • Laurent Gole
  • Anabel-Lise Le Roux
  • Anita Joanna Kosmalska
  • Zhi Yang Tam
  • Weiwei Luo
  • Sophie Kan
  • Virgile Viasnoff
  • Pere Roca-Cusachs
  • Lisa Tucker-Kellogg
  • Nils C Gauthier
چکیده

Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II-independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesive dynamics of lubricated films.

Membrane waves have been observed near the leading edge of a motile cell. Such phenomenon is the result of the interplay between hydrodynamics and adhesive dynamics. Here we consider membrane dynamics on a thin fluid gap supported by adhesive bonds. Using coupled lubrication theory and adhesive dynamics, we derive an evolution equation to account for membrane tension, bending, adhesion, and vis...

متن کامل

Contact Angle at the Leading Edge Controls Cell Protrusion Rate

Plasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of ...

متن کامل

Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone.

A growth cone is a motile structure at the tips of axons that is driven by the actin network and guides axon extension. Low actin adhesion to the substrate creates a stationary actin treadmill that allows leading-edge protrusion when adhesion increases in response to guidance cues. We use experimental measurements in the Aplysia bag growth cone to develop and constrain a simple mechanical model...

متن کامل

Structure of the orifice of the renal artery in the abdominal aorta in adult male dog

One of the locations of renal artery atherosclerosis is at the orifice of the renal artery, therefore thestructure of this orifice was assessed in 6 normal, adult male dogs by light microscopy (LM) andtransmission electron microscopy (TEM). For the LM study, processed tissues were embedded in paraffinand sectioned serially into 6-μm thickness. Sections were stained with orcein. For the TEM stud...

متن کامل

Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system.

During CNS development, oligodendrocytes wrap their plasma membrane around axons to generate multilamellar myelin sheaths. To drive growth at the leading edge of myelin at the interface with the axon, mechanical forces are necessary, but the underlying mechanisms are not known. Using an interdisciplinary approach that combines morphological, genetic, and biophysical analyses, we identified a ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2017